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Abstract
To find the origin of the diffusion channels observed in sodium silicate glasses,
we have performed classical molecular dynamics simulations of Na2O–4SiO2

during which the mass of the Si and O atoms has been multiplied by a tuning
coefficient. We observe that the channels disappear and that the diffusive motion
of the sodium atoms vanishes if this coefficient is larger than a threshold value.
Above this threshold the vibrational states of the matrix are not compatible with
those of the sodium ions. We thus interpret the decrease of the diffusion by the
absence of resonance conditions.

The mechanism of ionic transport in amorphous materials [1, 2] at the atomic scale is not
completely elucidated so far and therefore it is the subject of numerous experimental [3, 4] and
numerical [5–9] studies. Among the most studied systems are the sodium silicate glasses since
they contain the essential ingredients, namely the amorphous matrix (silica) and the mobile ions
(sodium), as a first step in the simulation of more complex glasses of greater practical interest.

In previous studies [10–12], we have shown by means of classical molecular dynamics
simulations of Na2O–4SiO2 (NS4) that the sodium atoms diffuse through a well connected
network of pockets (which represents only a limited fraction of the entire available space), that
we have called ‘channels’ to be consistent with the literature. The existence of the channels,
which are not due to micro-segregation effects [6, 7], has been confirmed by the existence of
a pre-peak in the partial Na–Na structure factor at a wavevector q = 0.95 Å−1 [13]. This
pre-peak has also been observed experimentally [14] and numerically [15] in another study.
We have also shown that the location of the channels is strongly correlated to the positions of
the non-bridging oxygens [13] and Horbach et al [15] have shown that the sodium dynamics
should be related to that of the underlying silica network. This suggests that the origin of
the channels could be related to the dynamical properties of the matrix. To check this idea
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we present in this letter classical molecular dynamics simulations on a series of ‘toy’ systems
in which the atomic masses of both the oxygen and silicon atoms have been systematically
changed after artificially multiplying their experimental values by a common factor µ varying
from 0.5 to infinity, the usual NS4 system being recovered for µ = 1.

By studying both the mean squared displacement (MSD) of the sodium atoms and the
characteristics of the channels, we find a change in the sodium diffusion properties when the
parameter µ is increased above a value of about 30. Above this threshold, the sodium diffusion
decreases and the channels can no longer be clearly defined. Guided by the concomitant change
in the short time characteristics of the velocity autocorrelation function, we have calculated the
vibrational density of states (VDOS) for both the sodium atoms and the atoms of the matrix
for various values of µ. We observe that the threshold corresponds to the value of µ above
which the sharp VDOS of the sodium atoms starts to separate from the band of vibrational
states of the matrix. Therefore we propose that the diffusive motion of the sodium atoms,
i.e. their ability to escape from their local cage, is facilitated when their vibrational frequencies
are compatible with those of the matrix. We argue that this mechanism is responsible for the
channel diffusion of sodium in the silica matrix.

In this letter we present classical molecular dynamics calculations of a system of 648
particles (86 sodium, 173 silicon and 389 oxygen atoms) confined in a cubic box of edge
length 20.88 Å with periodic boundary conditions. The density is thus the experimental
density of glassy NS4, i.e. 2.38 g cm−3 [16]. The interactions between the particles are given
by a modified version of the so-called ‘BKS’ potential [17, 18] which is able to reproduce
the structure as well as the dynamics of several sodium silicate systems [10–13, 19] (for more
details see [11]). In the present study we have generated three independent samples (in the
following, all the results are averaged over these samples in order to improve the statistics) at a
temperature of ∼1900 K for which the channels have been shown in our previous studies. For
each sample we have performed ten different simulations in which the mass of the atoms of the
matrix has been artificially multiplied by a factor µ of 0.5, 1, 2, 5, 10, 30, 102, 103, 104 and 106.
We have also carried out the limiting case µ = ∞ by performing simulations in which only the
sodium atoms move, the atoms of the matrix being kept fixed (frozen matrix approximation).
Each of these 33 samples has first been relaxed at ∼1900 K for 106 steps (1 step = 1.4 fs)
and the following 106 steps were used to produce 1000 configurations recorded every 1000
time steps. These configurations have then been used to analyse the trajectories of the sodium
atoms during these 1.4 ns.

In figure 1 we show R2(t), the MSD of the sodium atoms, for various values of µ. While
these curves have the characteristic long-time shape of strong diffusion for small values of µ,
they flatten out as µ increases. In the limiting case µ = ∞ (frozen matrix) the curve even
becomes completely flat, at least within the period of time covered by our simulations. In order
to give a quantitative idea of how the ionic diffusion properties decrease with increasing µ,
we have determined a characteristic time τMSD necessary for R2(t) to be equal to 4 Å2. This
corresponds to an average travel distance of 2 Å which is the minimum distance between two
Na neighbours (as determined from the Na–Na radial pair distribution function [12]). In the
inset of figure 1 we give the variation of τMSD with µ. While τMSD is almost independent of µ

for small µ, it starts to increase for values of µ larger than a value of about 30.
Since we have previously shown that the diffusive motion of the sodium atoms takes

place within channels [10–13], it is worth studying how these channels are modified when
the mass of the atoms of the matrix is changed. Therefore, for all our values of µ, we have
determined the channels, in the same manner as previously [10]: using a three-dimensional
mesh we determine the number of different sodium atoms that have visited each cube of the
mesh during the total simulation time. Then we define ξ , which is the minimal occupation
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Figure 1. Plot of the MSD R2(t) of the sodium atoms for different values of µ. Inset: plot of the
characteristic diffusion time τMSD (see the text for a definition) as a function of µ.
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Figure 2. Plot of ξ , the quantity used to define the channels (see the text for further details) as a
function of µ.

number such that the cubes visited more than ξ times represent the upper 10% of all the visited
cubes (for more details see [10]). In previous studies we have shown that at T ∼ 1900 K a
cube needed to be visited by at least ξ = 8 different sodium atoms during a 1.4 ns simulation
in order to be part of the channel structure.

Here we study how ξ changes with µ and the results (averaged over three samples) are
reported in figure 2. While for µ < 30, ξ remains almost constant between 7 and 8 within
the error bars, it starts to decrease dramatically for µ > 30. Obviously, as explained in [10–
13], one can no longer speak of ‘channels’ if ξ becomes as small as 1. Therefore one can
interpret the results in figure 2 by assuming that the channels disappear progressively as soon
as µ > 30. Then one can argue that the increase of the characteristic time for the diffusion
observed in figure 1 is intimately correlated with the disappearance of the channels shown in
figure 2. It should be noticed that the plateau observed in the inset of figure 1 and in figure 2
for µ < 30 is consistent with the standard theory of diffusion, which predicts that the diffusion
characteristics of the ions are only weakly dependent on the mass of the atoms of the matrix.
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Figure 3. Plot of the velocity autocorrelation function ϑ(t) of the sodium atoms for different values
of µ. Inset: plot of the intensity of the first minimum ϑm as a function of µ.

In order to know if the observed change in the long-time diffusive behaviour of the sodium
atoms is accompanied by a change in their short-time dynamical properties, we have calculated
the Na velocity autocorrelation function ϑ(t) = 〈�v(t0)�v(t0 + t)〉/〈v2(t0)〉 and studied its short-
time behaviour. As seen in figure 3 the short-time part of ϑ(t) is characterized by a first
minimum at τϑ , typical of the time for a sodium atom to bounce back and forth against the
internal boundaries of the cage in which it vibrates (well before being eventually able to jump
towards another cage). In the inset of figure 3 the intensity of the minimum ϑm = ϑ(τϑ) has
been plotted as a function of µ. ϑm � −0.28 for µ < 10 while ϑm drops down to −0.5 for
µ > 30. This increasing depth can be interpreted as an increasing stiffness of the internal
cage boundaries when µ is increased. In a classical mechanics picture, due to this increased
stiffness, the probability for a sodium atom to escape from its cage becomes weaker and this
is consistent with the vanishing diffusion observed in figure 1.

To go further in our microscopical analysis, and to understand the changes occurring
around µ ∼ 30, we have calculated the VDOS of the sodium atoms and the atoms of the matrix,
by Fourier transforming the corresponding velocity autocorrelation functions. It is known that
such a method reproduces only approximately the VDOS, since at finite temperature (here
T ∼ 1900 K), the harmonic hypothesis does not fully hold but this approximation will not be
crucial for our arguments. In figure 4(a) the VDOS of the oxygen atoms for different values of
µ are represented (a similar picture could be drawn for the Si atoms). The VDOS for µ = 1
is, of course, close to that of amorphous silica obtained experimentally, except that it is less
structured, which is a known drawback of the BKS potential [20]. Such a VDOS is typical of
a broad band of vibrational states, extending from ν = 0 up to ν1 � 35 THz, as a result of the
coupling between neighbouring oxygen and silicon atoms forming a strong random covalent
network. When increasing the mass of the atoms of the matrix, one observes a shrinkage of
the VDOS towards low frequencies. The top of the oxygen band, νO

max, has been plotted versus
µ in figure 4(c): as expected from standard solid state physics νO

max varies like ν1µ
−1/2. The

situation is quite different for the Na VDOS represented in figure 4(b) for three typical values
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Figure 4. (a) Plot of the VDOS of the oxygen atoms for different values of µ. (b) Plot of the
VDOS of the sodium atoms for µ = 1, 10 and 30. (c) Plot of the highest frequency of the oxygen
VDOS (•), the frequency of the first peak (�) and the second peak (�) of the sodium VDOS as a
function of µ. Full symbols (� and �) indicate the principal peak in the Na VDOS as µ changes.

of µ: it looks like a well defined peak centred at a frequency νNa
1 close to 5 THz for small

values of µ. Such a peak can be interpreted as being mostly due to the vibrations of the sodium
atoms in their cage. Using the approximate formula for such a motion, R−1√kT/mNa, where
R = 1 Å is a typical size of the cage deduced from the MSD and mNa is the mass of a sodium
atom, one finds a frequency of about 8 THz, in reasonable agreement with νNa

1 . The broadening
of the peak is then certainly due to the polydispersity of the R values as well as to the coupling
of the sodium atoms with other species. With increasing µ a second peak at νNa

2 grows out of
the high frequency part and increases while the peak at νNa

1 decreases and shifts towards low
frequencies. The variation of νNa

1 and νNa
2 with µ is represented in figure 4(c) where the main

peak of the Na VDOS is represented by the full symbols. One sees that, up to µ = 30, the peak
at νNa

1 is the main peak while for higher values of µ the peak at νNa
2 becomes the main peak.

Once the transition is fulfilled, the secondary Na peak (νNa
1 ) follows the variation of νO

max with
µ while the principal peak (νNa

2 ) remains at a constant frequency. Such a behaviour is typical
of hybridization effects as commonly seen in electronic and vibrational systems. It is due to
the coupling between the sodium atoms and the atoms of the matrix. The characteristic value
µ0, for which the principal peak in the Na VDOS starts to escape from the broad oxygen band,
can be estimated by equating the top of the band ν1µ

−1/2
0 and the typical sodium frequency,
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5 THz. This gives µ0 � 50 (indicated by the arrow in figure 4(c)), which is remarkably close
to the value of 30 above which we have observed the change in the diffusive properties of the
Na atoms.

Therefore the above analysis of the VDOS provides a very simple explanation of the
predominance of channel diffusion for µ smaller than µ0. In that case the sodium frequency
peak lies within the limits of the vibrational band of the matrix, as shown in figure 4(c).
Therefore there always exists a vibrational mode of the matrix with the same frequency as
that of the sodium atoms. Using a simple picture in direct space, the vibrational amplitudes
of the sodium atoms can become very large due to ‘resonance conditions’, giving them the
possibility to escape from their cage and to jump to a neighbouring cage, as is expected in
a local picture of the diffusive motion. Moreover, at the location where a sodium atom is
connected to an oxygen atom via a covalent-like bond, it is clear that the local hybridization is
important and this explains why the location of the channels, i.e. the preferential pathways for
the sodium diffusive motion, is strongly correlated to the position of the non-bridging oxygen
atoms. On the contrary, for µ > µ0, the vibrational peak of the sodium atoms is located
outside the VDOS of the matrix (figure 4(c)) and the resonance conditions are more difficult
to be fulfilled. As a consequence, the sodium atoms stay much longer confined in their cages.
This picture is consistent with our interpretation of the increasing depth of the first minimum of
the Na velocity autocorrelation function as being due to an increasing stiffness of the internal
cage boundaries when µ is increased above µ0.

In conclusion, we have demonstrated the essential role played by the vibrations of the
atoms of the matrix in the existence of the channel diffusion of sodium inside an amorphous
silica matrix. In a sense this is close to the concept of ‘matrix-mediated-coupling’ recently
used to interpret the mixed cation effect in glasses [21] except that we show here that the direct
hybridization between the ionic modes and the modes of the matrix is necessary to ensure a
fast diffusion process of the ions. This result is also coherent with previous studies showing
indirectly that the sodium dynamics should be intimately linked to that of the matrix [15]. Of
course, it would be extremely interesting to extend the present study to other kinds of ions,
such as Li, H, etc, to test the generality of our interpretation (according to preliminary results it
appears indeed that a similar behaviour is observed for Li in SiO2 [22]). This would constitute
a real improvement in the understanding of the mechanisms of ionic transport in random media.

We thank Professors K Funke and A Heuer for interesting discussions. Part of the numerical
calculations were done at the ‘Centre Informatique National de l’Enseignement Supérieur’
(CINES) in Montpellier.
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